Locality Optimizations in Tapestry

Jeremy Stribling

Joint work with:
Kris Hildrum
Ben Y. Zhao
Anthony D. Joseph
John D. Kubiatowicz

Sahara/OceanStore Winter Retreat
January 14, 2003
Object Location in Tapestry
Is This Always Optimal?
Why Is This a Problem?

- **Example Application**: OceanStore web caching
 - If a nearby replica exists, we must find it quickly

- **Measure of Locality**: Relative Delay Penalty (RDP)
 - The ratio of the distance of an object in Tapestry to the minimum possible distance (i.e. over IP)

- **Problem**: finding nearby objects incurs a high RDP
 - Two extra hops have a huge relative impact if object is close
 - An issue for all similar systems, not just Tapestry

- **Solution**: trade storage overhead for low RDP
Optimization 1: Publish to Backups

- **Redundancy**: Routing table entries store up to \(c \) nodes
 - Closest node is the *primary neighbor*, \(c-1 \) nodes are *backups*

- **A simple optimization**: publish to \(k \) backups
 - Limit to the first \(n \) hops of the publish path

- **Result**
 - Nodes near the object more likely to encounter pointers while routing to the root
 - Storage overhead: \(k \times n \) additional pointers per object
Optimization 1: Publish to Backups

Experiments run in simulation on a PlanetLab-based topology

$n = 2$ hops
Optimization 2: Local Misroute
Optimization 2: Local Misroute

• **Solution**: Before taking “long” hop, misroute to closer node
 – Look a little harder in the local area before leaving
 – When publishing, place a pointer on *local surrogate*

• **Issue**: What determines a “long” hop?
 – One metric: if next hop is more than m times longer than last hop, consider it “long”
 – Call m the *threshold factor*
Optimization 2: Local Misroute

Experiments run in simulation on a transit-stub topology
"Using sim knowledge" indicates direct use of the topology file
Future Work

• Analyze more locality optimizations and different parameter configurations
• Take measurements on PlanetLab
• Test optimizations with real workloads (i.e. web caching)
• Complete cost analysis of storage overhead vs. RDP benefit across all optimizations